Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38405706

ABSTRACT

IGF2BP2 (IMP2) is an RNA-binding protein that contributes to cancer tumorigenesis and metabolic disorders. Structural studies focused on individual IMP2 domains have provided important mechanistic insights into IMP2 function; however, structural information on full-length IMP2 is lacking but necessary to understand how to target IMP2 activity in drug discovery. In this study, we investigated the behavior of full-length IMP2 and the influence of RNA binding using biophysical and structural methods including mass photometry, hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), and small angle x-ray scattering (SAXS). We found that full-length IMP2 forms multiple oligomeric states but predominantly adopts a dimeric conformation. Molecular models derived from SAXS data suggest the dimer is formed in a head-to-tail orientation by the KH34 and RRM1 domains. Upon RNA binding, IMP2 forms a pseudo-symmetric dimer different from its apo/RNA-free state, with the KH12 domains of each IMP2 molecule forming the dimer interface. We also found that the formation of IMP2 oligomeric species, which includes dimers and higher-order oligomers, is sensitive to ionic strength and RNA binding. Our findings provide the first insight into the structural properties of full-length IMP2, which may lead to novel opportunities for disrupting its function with more effective IMP2 inhibitors.

2.
Proc Natl Acad Sci U S A ; 119(38): e2202490119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095199

ABSTRACT

Muscle cell fusion is a multistep process where the final step of the reaction drives progression beyond early hemifusion events to complete fusion. This step requires activity of the muscle-specific fusogen Myomerger, a single-pass transmembrane protein containing 84 amino acids with an ectodomain that includes two α-helices. Previous studies have demonstrated that Myomerger acts by destabilizing membranes through generation of elastic stresses in the outer leaflet of the plasma membrane. An obvious question is how such destabilizing activity might be regulated to avoid membrane and cellular damage, and how the two juxtaposed helices cooperate in fusion. Using cellular fusion assays and in vitro liposome assays, we report that the two helices possess unique characteristics, both of which are needed for full activity of the protein. We demonstrate that externalized phosphatidylserine (PS), a lipid previously implicated in myoblast fusion, has a determinant role in the regulation of Myomerger activity. The membrane-proximal, amphipathic Helix-1 is normally disordered and its α-helical structure is induced by PS, making membrane interactions more efficacious. The distal, more hydrophobic Helix-2 is intrinsically ordered, possesses an ability to insert into membranes, and augments the membrane-stressing effects of Helix-1. These data reveal that Myomerger fusogenic activity is an exquisitely orchestrated event involving its two ectodomain helices, which are controlled by membrane lipid composition, providing an explanation as to how its membrane-stressing activity is spatially and temporally regulated during the final step of myoblast fusion.


Subject(s)
Cell Fusion , Membrane Proteins , Myoblasts , Phosphatidylserines , Animals , Cell Line , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Myoblasts/physiology
4.
Sci Adv ; 7(5)2021 01.
Article in English | MEDLINE | ID: mdl-33571111

ABSTRACT

Heme is the endogenous ligand for the constitutively repressive REV-ERB nuclear receptors, REV-ERBα (NR1D1) and REV-ERBß (NR1D2), but how heme regulates REV-ERB activity remains unclear. Cellular studies indicate that heme is required for the REV-ERBs to bind the corepressor NCoR and repress transcription. However, fluorescence-based biochemical assays suggest that heme displaces NCoR; here, we show that this is due to a heme-dependent artifact. Using ITC and NMR spectroscopy, we show that heme binding remodels the thermodynamic interaction profile of NCoR receptor interaction domain (RID) binding to REV-ERBß ligand-binding domain (LBD). We solved two crystal structures of REV-ERBß LBD cobound to heme and NCoR peptides, revealing the heme-dependent NCoR binding mode. ITC and chemical cross-linking mass spectrometry reveals a 2:1 LBD:RID stoichiometry, consistent with cellular studies showing that NCoR-dependent repression of REV-ERB transcription occurs on dimeric DNA response elements. Our findings should facilitate renewed progress toward understanding heme-dependent REV-ERB activity.

5.
J Med Chem ; 63(24): 15639-15654, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33289551

ABSTRACT

Nurr1/NR4A2 is an orphan nuclear receptor transcription factor implicated as a drug target for neurological disorders including Alzheimer's and Parkinson's diseases. Previous studies identified small-molecule NR4A nuclear receptor modulators, but it remains unclear if these ligands affect transcription via direct binding to Nurr1. We assessed 12 ligands reported to affect NR4A activity for Nurr1-dependent and Nurr1-independent transcriptional effects and the ability to bind the Nurr1 ligand-binding domain (LBD). Protein NMR structural footprinting data show that amodiaquine, chloroquine, and cytosporone B bind the Nurr1 LBD; ligands that do not bind include C-DIM12, celastrol, camptothecin, IP7e, isoalantolactone, ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA), and three high-throughput screening hit derivatives. Importantly, ligands that modulate Nurr1 transcription also show Nurr1-independent effects on transcription in a cell type-specific manner, indicating that care should be taken when interpreting the functional response of these ligands in transcriptional assays. These findings should help focus medicinal chemistry efforts that desire to optimize Nurr1-binding ligands.


Subject(s)
Ligands , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Amodiaquine/chemistry , Amodiaquine/metabolism , Amodiaquine/pharmacology , Animals , Cell Line , Chloroquine/chemistry , Chloroquine/metabolism , Chloroquine/pharmacology , Humans , Nuclear Magnetic Resonance, Biomolecular , Nuclear Receptor Subfamily 4, Group A, Member 2/chemistry , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Phenylacetates/chemistry , Phenylacetates/metabolism , Phenylacetates/pharmacology , Protein Binding , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Transcription, Genetic/drug effects
6.
Structure ; 27(1): 66-77.e5, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30416039

ABSTRACT

Nuclear receptor-related 1 protein (Nurr1/NR4A2) is an orphan nuclear receptor (NR) that is considered to function without a canonical ligand-binding pocket (LBP). A crystal structure of the Nurr1 ligand-binding domain (LBD) revealed no physical space in the conserved region where other NRs with solvent accessible apo-protein LBPs bind synthetic and natural ligands. Using solution nuclear magnetic resonance spectroscopy, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we show that the putative canonical Nurr1 LBP is dynamic with high solvent accessibility, exchanges between two or more conformations on the microsecond-to-millisecond timescale, and can expand from the collapsed crystallized conformation to allow binding of unsaturated fatty acids. These findings should stimulate future studies to probe the ligandability and druggability of Nurr1 for both endogenous and synthetic ligands, which could lead to new therapeutics for Nurr1-related diseases, including Parkinson's disease and schizophrenia.


Subject(s)
Molecular Docking Simulation , Nuclear Receptor Subfamily 4, Group A, Member 2/chemistry , Binding Sites , Fatty Acids, Unsaturated/chemistry , Humans , Ligands , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Protein Binding
7.
Elife ; 72018 12 21.
Article in English | MEDLINE | ID: mdl-30575522

ABSTRACT

Crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) have revealed overlapping binding modes for synthetic and natural/endogenous ligands, indicating competition for the orthosteric pocket. Here we show that cobinding of a synthetic ligand to the orthosteric pocket can push natural and endogenous PPARγ ligands (fatty acids) out of the orthosteric pocket towards an alternate ligand-binding site near the functionally important omega (Ω)-loop. X-ray crystallography, NMR spectroscopy, all-atom molecular dynamics simulations, and mutagenesis coupled to quantitative biochemical functional and cellular assays reveal that synthetic ligand and fatty acid cobinding can form a 'ligand link' to the Ω-loop and synergistically affect the structure and function of PPARγ. These findings contribute to a growing body of evidence indicating ligand binding to nuclear receptors can be more complex than the classical one-for-one orthosteric exchange of a natural or endogenous ligand with a synthetic ligand.


Subject(s)
Molecular Dynamics Simulation , PPAR gamma/chemistry , PPAR gamma/metabolism , Protein Conformation , Binding Sites , Crystallography, X-Ray , Fatty Acids/chemistry , Fatty Acids/metabolism , Humans , Ligands , Molecular Structure , Oxazoles/chemistry , Oxazoles/metabolism , Oxazoles/pharmacology , PPAR gamma/agonists , Protein Binding , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/metabolism , Thiazolidinediones/pharmacology
8.
Structure ; 25(10): 1506-1518.e4, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28890360

ABSTRACT

Nuclear receptor (NR) transcription factors bind various coreceptors, small-molecule ligands, DNA response element sequences, and transcriptional coregulator proteins to affect gene transcription. Small-molecule ligands and DNA are known to influence receptor structure, coregulator protein interaction, and function; however, little is known on the mechanism of synergy between ligand and DNA. Using quantitative biochemical, biophysical, and solution structural methods, including 13C-detected nuclear magnetic resonance and hydrogen/deuterium exchange (HDX) mass spectrometry, we show that ligand and DNA cooperatively recruit the intrinsically disordered steroid receptor coactivator-2 (SRC-2/TIF2/GRIP1/NCoA-2) receptor interaction domain to peroxisome proliferator-activated receptor gamma-retinoid X receptor alpha (PPARγ-RXRα) heterodimer and reveal the binding determinants of the complex. Our data reveal a thermodynamic mechanism by which DNA binding propagates a conformational change in PPARγ-RXRα, stabilizes the receptor ligand binding domain dimer interface, and impacts ligand potency and cooperativity in NR coactivator recruitment.


Subject(s)
DNA/metabolism , Multiprotein Complexes/chemistry , Nuclear Receptor Coactivator 2/chemistry , Nuclear Receptor Coactivator 2/metabolism , Binding Sites , Carbon-13 Magnetic Resonance Spectroscopy , Deuterium Exchange Measurement , Gene Expression Regulation , Humans , Ligands , PPAR gamma/chemistry , PPAR gamma/metabolism , Protein Binding , Retinoid X Receptor alpha/chemistry , Retinoid X Receptor alpha/metabolism
9.
Nucleic Acids Res ; 44(22): 10862-10878, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27744351

ABSTRACT

Terminal uridyltransferases (TUTases) execute 3' RNA uridylation across protists, fungi, metazoan and plant species. Uridylation plays a particularly prominent role in RNA processing pathways of kinetoplastid protists typified by the causative agent of African sleeping sickness, Trypanosoma brucei In mitochondria of this pathogen, most mRNAs are internally modified by U-insertion/deletion editing while guide RNAs and rRNAs are U-tailed. The founding member of TUTase family, RNA editing TUTase 1 (RET1), functions as a subunit of the 3' processome in uridylation of gRNA precursors and mature guide RNAs. Along with KPAP1 poly(A) polymerase, RET1 also participates in mRNA translational activation. RET1 is divergent from human TUTases and is essential for parasite viability in the mammalian host and the insect vector. Given its robust in vitro activity, RET1 represents an attractive target for trypanocide development. Here, we report high-resolution crystal structures of the RET1 catalytic core alone and in complex with UTP analogs. These structures reveal a tight docking of the conserved nucleotidyl transferase bi-domain module with a RET1-specific C2H2 zinc finger and RNA recognition (RRM) domains. Furthermore, we define RET1 region required for incorporation into the 3' processome, determinants for RNA binding, subunit oligomerization and processive UTP incorporation, and predict druggable pockets.


Subject(s)
Coatomer Protein/chemistry , Protozoan Proteins/chemistry , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Drug Design , Hydrogen Bonding , Kinetics , Leishmania/enzymology , Molecular Dynamics Simulation , Protein Binding , Protein Conformation, alpha-Helical , RNA Editing , Substrate Specificity , Trypanocidal Agents/chemistry
10.
ACS Chem Biol ; 11(7): 1795-9, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27128111

ABSTRACT

Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Binding Sites , Magnetic Resonance Spectroscopy
11.
J Comp Neurol ; 524(14): 2776-802, 2016 10 01.
Article in English | MEDLINE | ID: mdl-26918661

ABSTRACT

GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. J. Comp. Neurol. 524:2776-2802, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Nucleus/metabolism , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cytoplasm/metabolism , Gene Expression Regulation, Developmental , Receptors, G-Protein-Coupled/biosynthesis , Age Factors , Animals , Animals, Newborn , Cerebral Cortex/chemistry , Cytoplasm/chemistry , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/analysis , Young Adult
12.
Biomed Res Int ; 2015: 968127, 2015.
Article in English | MEDLINE | ID: mdl-26078976

ABSTRACT

In eukaryotes, mRNA polyadenylation is a well-known modification that is essential for many aspects of the protein-coding RNAs life cycle. However, modification of the 3' terminal nucleotide within various RNA molecules is a general and conserved process that broadly modulates RNA function in all kingdoms of life. Numerous types of modifications have been characterized, which are generally specific for a given type of RNA such as the CCA addition found in tRNAs. In recent years, the addition of nontemplated uridine nucleotides or uridylation has been shown to occur in various types of RNA molecules and in various cellular compartments with significantly different outcomes. Indeed, uridylation is able to alter RNA half-life both in positive and in negative ways, highlighting the importance of the enzymes in charge of performing this modification. The present review aims at summarizing the current knowledge on the various processes leading to RNA 3'-end uridylation and on their potential impacts in various diseases.


Subject(s)
Polyadenylation/genetics , RNA 3' End Processing/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , Eukaryota/genetics , Humans , MicroRNAs/genetics , RNA Stability/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
13.
Nucleic Acids Res ; 42(5): 3372-80, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24322298

ABSTRACT

The addition of uridine nucleotide by the poly(U) polymerase (PUP) enzymes has a demonstrated impact on various classes of RNAs such as microRNAs (miRNAs), histone-encoding RNAs and messenger RNAs. Cid1 protein is a member of the PUP family. We solved the crystal structure of Cid1 in complex with non-hydrolyzable UMPNPP and a short dinucleotide compound ApU. These structures revealed new residues involved in substrate/product stabilization. In particular, one of the three catalytic aspartate residues explains the RNA dependence of its PUP activity. Moreover, other residues such as residue N165 or the ß-trapdoor are shown to be critical for Cid1 activity. We finally suggest that the length and sequence of Cid1 substrate RNA influence the balance between Cid1's processive and distributive activities. We propose that particular processes regulated by PUPs require the enzymes to switch between the two types of activity as shown for the miRNA biogenesis where PUPs can either promote DICER cleavage via short U-tail or trigger miRNA degradation by adding longer poly(U) tail. The enzymatic properties of these enzymes may be critical for determining their particular function in vivo.


Subject(s)
Nucleotidyltransferases/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Crystallography, X-Ray , Models, Molecular , Nucleotides/chemistry , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Polymerization , Protein Binding , RNA/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
14.
Structure ; 20(6): 977-86, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22608966

ABSTRACT

In eukaryotes, mRNA degradation begins with poly(A) tail removal, followed by decapping, and the mRNA body is degraded by exonucleases. In recent years, the major influence of 3'-end uridylation as a regulatory step within several RNA degradation pathways has generated significant attention toward the responsible enzymes, which are called poly(U) polymerases (PUPs). We determined the atomic structure of the Cid1 protein, the founding member of the PUP family, in its UTP-bound form, allowing unambiguous positioning of the UTP molecule. Our data also suggest that the RNA substrate accommodation and product translocation by the Cid1 protein rely on local and global movements of the enzyme. Supplemented by point mutations, the atomic model is used to propose a catalytic cycle. Our study underlines the Cid1 RNA binding properties, a feature with critical implications for miRNAs, histone mRNAs, and, more generally, cellular RNA degradation.


Subject(s)
Nucleotidyltransferases/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces/enzymology , Amino Acid Motifs , Amino Acid Sequence , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Protein Binding , RNA, Fungal/chemistry , Substrate Specificity , Surface Properties , Uridine Triphosphate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...